ascendai/cannCANN (Compute Architecture for Neural Networks) is a heterogeneous computing architecture launched by Ascend for AI scenarios. It supports multiple AI frameworks and serves AI processors and programming. It plays a key role in connecting the upper and lower levels and is a key platform for improving the computing efficiency of Ascend AI processors. At the same time, it provides efficient and easy-to-use programming interfaces for diverse application scenarios, supporting users to quickly build AI applications and businesses based on the Ascend platform.
Ascend-CANN image is based on Ubuntu OS or openEuler OS, and integrates system packages, Python and CANN (Toolkit development kit package, Kernels operator package, NNAL acceleration library). Users can install the artificial intelligence framework based on this basic image according to actual needs and run the corresponding business programs.
You can find the currently released tags and corresponding dockerfiles in the cann directory of the following repository:
[***]
bash# Assuming your NPU device is mounted at /dev/davinci1 and your NPU driver is installed at /usr/local/Ascend: docker run \ --name cann_container \ --device /dev/davinci1 \ --device /dev/davinci_manager \ --device /dev/devmm_svm \ --device /dev/hisi_hdc \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \ -v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \ -v /etc/ascend_install.info:/etc/ascend_install.info \ -it ascend/cann:tag bash
Configure the abi parameter when executing the CANN environment variable script /usr/local/Ascend/nnal/atb/set_env.sh:
Automatic configuration: When executing the set_env.sh script, if no parameters are added and the PyTorch environment has been detected, the torch.compiled_with_cxx11_abi() interface will be automatically called to automatically select the abi parameter when PyTorch is compiled as the abi parameter of ATB. If the PyTorch environment is not detected, abi=1 is configured by default.
Manual configuration: When executing set_env.sh, users are supported to specify the abi parameter of ATB through the --cxx_abi=1 and --cxx_abi=0 parameters.
In CANN 8.1.RC1 and later versions of the image, use ENV to define ATB's abi=0, and write source /usr/local/Ascend/nnal/atb/set_env.sh to bashrc and ENTRYPOINT to ensure that the value of the abi parameter is set correctly when starting the container. You can also manually specify the abi parameter value of ATB in the container.
If you don't find the CANN image you want or find any problems when using the image, please feel free to file an issue.
Apache License, Version 2.0
As with all Docker images, these images may also contain other software that may be subject to other licenses (such as Bash in the base distribution, and any direct or indirect dependencies of the included main software).
For any use of the pre-built image, it is the image user's responsibility to ensure that any use of this image complies with the relevant licenses of all software contained in it.
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务