debezium/postgresThis repository has been relocated to quay.io/debezium/postgres.
The Postgres relational database management system has a feature called logical decoding that allows clients to extract all persistent changes to a database's tables into a coherent, easy to understand format which can be interpreted without detailed knowledge of the database's internal state. An output plugin transform the data from the write-ahead log's internal representation into the format the consumer of a replication slot desires.
This image is based upon postgres:11-apline and adds two logical decoding plug-ins:
Both are supported by the Debezium PostgreSQL Connector to capture changes committed to the database and record the data change events in Kafka topics.
In addition, Debezium supports the pgoutput plug-in, which is available by default on Postgres 10 and later.
This provides an example of how the Debezium output plugin can be installed and how to enable PostgreSQL's logical decoding feature.
Debezium is a distributed platform that turns your existing databases into event streams, so applications can quickly react to each row-level change in the databases. Debezium is built on top of Kafka and provides Kafka Connect compatible connectors that monitor specific database management systems. Debezium records the history of data changes in Kafka logs, so your application can be stopped and restarted at any time and can easily consume all of the events it missed while it was not running, ensuring that all events are processed correctly and completely.
Running Debezium involves Zookeeper, Kafka, and services that run Debezium's connectors. For simple evaluation and experimentation, all services can all be run on a single host machine, using the recipe outlined below. Production environments, however, require properly running and networking multiple instances of each service to provide the performance, reliability, replication, and fault tolerance. This can be done with a platform like OpenShift that manages multiple Docker containers running on multiple hosts and machines. But running Kafka in a Docker container has limitations, so for scenarios where very high throughput is required, you should run Kafka on dedicated hardware as explained in the Kafka documentation.
This image is used in the same manner as the postgres:10.0-alpine image, though the /usr/share/postgresql/postgresql.conf.sample file configures the logical decoding feature:
# LOGGING log_min_error_statement = fatal # CONNECTION listen_addresses = '*' # MODULES shared_preload_libraries = 'decoderbufs' # REPLICATION wal_level = logical # minimal, archive, hot_standby, or logical (change requires restart) max_wal_senders = 1 # max number of walsender processes (change requires restart) #wal_keep_segments = 4 # in logfile segments, 16MB each; 0 disables #wal_sender_timeout = 60s # in milliseconds; 0 disables max_replication_slots = 1 # max number of replication slots (change requires restart)
This file instructs PostgreSQL to load Debezium's logical decoding output plugin, enable the logical decoding feature, and configure a single replication slot that will be used by the Debezium PostgreSQL Connector.



探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
VS Code Dev Containers 配置
MacOS OrbStack 容器配置
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务