starrocks/allin1-ubuntuStarRocks is a next-gen, high-performance analytical data warehouse that enables real-time, multi-dimensional, and highly concurrent data analysis. StarRocks has an MPP architecture and is equipped with a fully vectorized execution engine, a columnar storage engine that supports real-time updates, and is powered by a rich set of features including a fully-customized cost-based optimizer (CBO), intelligent materialized view, and more. StarRocks supports real-time and batch data ingestion from a variety of data sources. It also allows you to directly analyze data stored in data lakes with zero data migration.
For more information see [***]
StarRocks consists of frontend (FE), backend (BE), and when using object storage compute (CN), nodes.
FEs are responsible for metadata management, client connection management, query planning, and query scheduling. Each FE stores and maintains a complete copy of metadata in its memory, which guarantees indiscriminate services among the FEs. FEs can work as the leader, followers, and observers. Followers can elect a leader according to the Paxos-like BDB JE protocol. BDB JE is short for Berkeley DB Java Edition.
BEs are responsible for data storage and SQL execution.
Data storage
BEs have data storage capabilities. FEs distribute data to BEs based on predefined rules. BEs transform the ingested data, write the data into the required format, and generate indexes for the data.
SQL execution
When an SQL query arrives, FEs parse it into a logical execution plan according to the semantics of the query, and then transform the logical plan into physical execution plans that can be executed on BEs. BEs that store the destination data execute the query. This eliminates the need for data transmission and copy, achieving high query performance.
CNs are stateless BEs; data is stored in object storage instead of local storage. CN nodes are responsible for tasks such as data loading, query computation, and cache management.
Architecture docs
For each of the use-cases listed there are Quick Starts (step-by-step tutorials).
Use the StarRocks basics to deploy a single container containing both a StarRocks frontend and backend, load some data, and analyze the data.
Follow the shared-data Quick Start tutorial to deploy StarRocks and MinIO. You can modify the provided Docker Compose file to switch to S3, GCS, Azure, or other object storage.
Compose file
Deploy using the StarRocks Helm chart and Kubernetes operator:
Quick Start tutorial
Operator repo with more examples
The default port used to connect to StarRocks using the MySQL protocol is 9030. The provided Docker Compose files will expose port 9030 using notation similar to:
yamlports: - "8030:8030" - "9020:9020" - "9030:9030"
If you are running the containers from the command line, expose the port with something like:
bashdocker run -p 9030:9030 ...
If you have exposed port 9030, connect:
bashmysql -P9030 -h 127.0.0.1 -u root --prompt="StarRocks > " -p
If you have not configured a password for root just hit enter when prompted.
You can also use the MySQL client provided in the container:
bashdocker compose exec starrocks-fe \ mysql -P9030 -h127.0.0.1 -uroot --prompt="StarRocks > "
Or:
bashdocker exec -ti starrocks-fe mysql -P9030 -h127.0.0.1 -uroot --prompt="StarRocks > " -p
Tip
Substitute you service or container name for
starrocks-fein the exec commands
You can use other clients that support the MySQL protocol, just use port 9030 in place of the default MySQL port.
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务