zenika/ztraining2strigoCreate Strigo class for Zenika training.
ztraining2strigo-x.y.z.exe from latest release.ztraining2strigo.exePATHAn alternative is to follow the procedure for other OS.
Make sure to have Python >= 3.11 installed.
Download the ztraining2strigo-x.y.z-py3-none-any.whl from latest release.
Install the wheel package:
shellpip install ztraining2strigo-x.y.z-py3-none-any.whl
Get the image zenika/ztraining2strigo:x.y.z:
shelldocker image pull zenika/ztraining2strigo:x.y.z
Define an alias ztraining2strigo:
shellalias ztraining2strigo='docker container run --rm --volume $(pwd):/training --user $(id -u):$(id -g) --env STRIGO_ORG_ID --env STRIGO_API_KEY --env Z2S_TRACE_HTTP --interactive --tty zenika/ztraining2strigo:x.y.z'
STRIGO_ORG_ID with the value of "Organization ID"STRIGO_API_KEY with the value of "API Key"If the environment variables are not set, the Strigo credentials will be asked when launching the tool.
ztraining2strigo binaryshell$ ztraining2strigo --help usage: ztraining2strigo [-h] [--config CONFIG] COMMAND ... positional arguments: COMMAND sub-command help create Create config for new Strigo class. The class parameters are asked interactively. retrieve Retrieve config from existing Strigo class update Update Strigo class from config optional arguments: -h, --help show this help message and exit --config CONFIG
shell$ ztraining2strigo retrieve --help usage: ztraining2strigo retrieve [-h] CLASS_ID positional arguments: CLASS_ID Existing Strigo class ID optional arguments: -h, --help show this help message and exit
This command can be used to create the configuration from existing Strigo class.
strigo.json file at the root of your training (or one referenced by --config)PDF/Installation/strigo/init_<machine_name>.shInstallation/strigo/post_launch_<machine_name>.shAfter launching this command, you can:
shell$ ztraining2strigo create --help usage: ztraining2strigo create [-h] optional arguments: -h, --help show this help message and exit
This command can be used to create a configuration and the corresponding Strigo class.
strigo.json file at the root of your training (or one referenced by --config)shell$ ztraining2strigo update --help usage: ztraining2strigo update [-h] [--dry-run] [--diff] optional arguments: -h, --help show this help message and exit --dry-run, -n Do not perform update --diff, -d Display diff of changes to apply in machines scripts
This command can be used to update a Strigo class from local configuration.
--dry-run optionConfiguration is stored in JSON format inside a strigo.json file at the root of your training (or one referenced by --config).
There is a JSON Schema available at <[***]>.
id: the Strigo ID of the class, shouldn't be changedname: the name of the classdescription: the list of lines of description of the class (can be empty list [])labels: the list of labels the class (can be empty list [])presentations: the list of presentation materials, can only contains 1 element for now (Strigo model)
file: the path to presentation file (typically pdf/Zenika-Formation-xxx-Slides.pdf or pdf/Zenika-training-material-Slides.pdf)notes_source: the path to the listing of slides for notes extraction (should be Slides/slides.json)resources: the list of lab machines
name: the display name of the machineinstance_type: the size of the machine (one of t3.medium, t3.large or t3.xlarge, see AWS EC2 T3 Instances)image: the machine image, can be the normalized name of the preconfigured Strigo images (lower case, space replaced by simple hyphen -), or a custom image:
image_id: the AMI IDimage_user: the default user of the AMIec2_region: the region of the AMIinit_scripts: the list of init scripts to use for the machine, content of all the scripts will be concatenated into 1 init script in Strigo. Can be either:
path: the path of the local script inside the training repositoryscript: the filename of the scriptversion: the git version of the script to get (defaults to main)env: the mapping of environment variables for the scriptpost_launch_scripts: the list of post launch batch scripts (Windows only) to use for the machine, content of all the scripts will be concatenated into 1 init script in Strigo. Same format as init_scriptsview_interface: the default interface of the machine (one of terminal or desktop, defaults to none)webview_links: the list of web interfaces of the machine:
name: the name of the interfaceurl: the URL of the interface (something of the form [***]<port>)Example:
json{ "$schema": "[***]", "name": "My training", "id": "43t8s3ZNSGwy89Ffo", "description": [ "The description of the training", "", "Can be on multiple lines in a list" ], "presentations": [ { "file": "pdf/Zenika-training-material-Slides.pdf", "notes_source": "Slides/slides.json" } ], "resources": [ { "name": "machine1", "instance_type": "t2.medium", "image": "ubuntu-16.04.2", "init_scripts": [ { "path": "Installation/strigo/init_all.sh" }, { "path": "Installation/strigo/init_machine1.sh" }, { "script": "code-server.sh", "env": { "code_server_version": "3.11.1", "code_server_extensions": "ms-azuretools.vscode-docker coenraads.bracket-pair-colorizer-2", "code_server_settings": "{\"workbench.colorTheme\": \"Default Dark+\"}" } } ], "post_launch_scripts": [], "webview_links": [ { "name": "code-server", "url": "[***]" } ] }, { "name": "machine2", "instance_type": "t2.xlarge", "image": { "image_id": "ami-0b209583a4a1146dd", "image_user": "ubuntu", "ec2_region": "eu-west-3" }, "init_scripts": [ { "path": "Installation/strigo/init_all.sh" } ], "post_launch_scripts": [], "webview_links": [] } ] }
Building requirement is a Python environment >= 3.11.
shell./build.sh
powershell.\build_windows.ps1
shelldocker image build --tag zenika/ztraining2strigo .
You can activate HTTP traces by setting the environment variable Z2S_TRACE_HTTP to 1 or True.
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
VS Code Dev Containers 配置
MacOS OrbStack 容器配置
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务