intel/intel-optimized-mlPROJECT NOT UNDER ACTIVE MANAGEMENT. This image repo will no longer be maintained by Intel.
Intel® Extension for Scikit-learn* enhances the performance of Scikit-learn* by accelerating the training and inference of machine learning models on Intel® hardware.
XGBoost* is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.
The images below include Intel® Extension for Scikit-learn* and XGBoost*.
| Tag(s) | Intel SKLearn | Scikit-learn | XGBoost | Dockerfile |
|---|---|---|---|---|
2024.7.0-pip-base, latest | v2024.7.0 | v1.5.2 | v2.1.1 | v0.4.0 |
2024.6.0-pip-base | v2024.6.0 | v1.5.0 | v2.1.0 | v0.4.0 |
2024.5.0-pip-base | v2024.5.0 | v1.5.0 | v2.1.0 | v0.4.0 |
2024.3.0-pip-base | v2024.3.0 | v1.4.2 | v2.0.3 | v0.4.0-Beta |
2024.2.0-xgboost-2.0.3-pip-base | v2024.2.0 | v1.4.1 | v2.0.3 | v0.4.0-Beta |
scikit-learning-2024.0.0-xgboost-2.0.2-pip-base | v2024.0.0 | v1.3.2 | v2.0.2 | v0.3.4 |
The images below additionally include Jupyter Notebook server:
| Tag(s) | Intel SKLearn | Scikit-learn | XGBoost | Dockerfile |
|---|---|---|---|---|
2024.7.0-pip-jupyter | v2024.7.0 | v1.5.2 | v2.1.1 | v0.4.0 |
2024.6.0-pip-jupyter | v2024.6.0 | v1.5.1 | v2.1.1 | v0.4.0 |
2024.5.0-pip-jupyter | v2024.5.0 | v1.5.0 | v2.1.0 | v0.4.0 |
2024.3.0-pip-jupyter | v2024.3.0 | v1.4.2 | v2.0.3 | v0.4.0-Beta |
2024.2.0-xgboost-2.0.3-pip-jupyter | v2024.2.0 | v1.4.1 | v2.0.3 | v0.4.0-Beta |
scikit-learning-2024.0.0-xgboost-2.0.2-pip-jupyter | v2024.0.0 | v1.3.2 | v2.0.2 | v0.3.4 |
bashdocker run -it --rm \ -p 8888:8888 \ --net=host \ -v $PWD/workspace:/workspace \ -w /workspace \ intel/intel-optimized-ml:2024.2.0-xgboost-2.0.3-pip-jupyter
After running the command above, copy the URL (something like [***]) into your browser to access the notebook server.
The images below include [Intel® Distribution for Python*]:
| Tag(s) | Intel SKLearn | Scikit-learn | XGBoost | Dockerfile |
|---|---|---|---|---|
2024.7.0-idp-base | v2024.7.0 | v1.5.2 | v2.1.1 | v0.4.0 |
2024.6.0-idp-base | v2024.6.0 | v1.5.1 | v2.1.1 | v0.4.0 |
2024.5.0-idp-base | v2024.5.0 | v1.5.0 | v2.1.0 | v0.4.0 |
2024.3.0-idp-base | v2024.3.0 | v1.4.1 | v2.1.0 | v0.4.0 |
2024.2.0-xgboost-2.0.3-idp-base | v2024.2.0 | v1.4.1 | v2.0.3 | v0.4.0-Beta |
scikit-learning-2024.0.0-xgboost-2.0.2-idp-base | v2024.0.0 | v1.3.2 | v2.0.2 | v0.3.4 |
The images below additionally include Jupyter Notebook server:
| Tag(s) | Intel SKLearn | Scikit-learn | XGBoost | Dockerfile |
|---|---|---|---|---|
2024.7.0-idp-jupyter | v2024.7.0 | v1.5.2 | v2.1.1 | v0.4.0 |
2024.6.0-idp-jupyter | v2024.6.0 | v1.5.1 | v2.1.1 | v0.4.0 |
2024.5.0-idp-jupyter | v2024.5.0 | v1.5.0 | v2.1.0 | v0.4.0 |
2024.3.0-idp-jupyter | v2024.3.0 | [v1.4.0] | v2.1.0 | v0.4.0 |
2024.2.0-xgboost-2.0.3-idp-jupyter | v2024.2.0 | v1.4.1 | v2.0.3 | v0.4.0-Beta |
scikit-learning-2024.0.0-xgboost-2.0.2-idp-jupyter | v2024.0.0 | v1.3.2 | v2.0.2 | v0.3.4 |
To build the images from source, clone the AI Containers repository, follow the main README.md file to setup your environment, and run the following command:
bashcd classical-ml docker compose build ml-base docker compose run ml-base
You can find the list of services below for each container in the group:
| Service Name | Description |
|---|---|
ml-base | Base image with Intel® Extension for Scikit-learn* and XGBoost* |
jupyter | Adds Jupyter Notebook server |
View the License for the Intel® Distribution for Python.
The images below also contain other software which may be under other licenses (such as Pytorch*, Jupyter*, Bash, etc. from the base).
It is the image user's responsibility to ensure that any use of The images below comply with any relevant licenses for all software contained within.
* Other names and brands may be claimed as the property of others.
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
VS Code Dev Containers 配置
MacOS OrbStack 容器配置
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务