intel/intel-optimized-tensorflowPROJECT NOT UNDER ACTIVE MANAGEMENT. This image repo will no longer be maintained by Intel.
Intel® Extension for TensorFlow* extends TensorFlow* with up-to-date feature optimizations for an extra performance boost on Intel hardware.
Intel® Extension for TensorFlow* is based on the TensorFlow PluggableDevice interface to bring Intel XPU(GPU, CPU, etc.) devices into TensorFlow* with flexibility for on-demand performance on the following Intel GPUs:
Note: There are two dockerhub repositories (
intel/intel-extension-for-tensorflowandintel/intel-optimized-tensorflow) that are routinely updated with the latest images, however, some legacy images have not be published to both repositories.
The images below include support for both CPU and GPU optimizations:
| Tag(s) | TensorFlow | ITEX | Driver | Dockerfile |
|---|---|---|---|---|
2.15.0.3-xpu-pip-base, xpu | v2.15.1 | v2.15.0.3 | 1077 | v0.4.0-Beta |
2.15.0.2-xpu-pip-base, xpu | v2.15.1 | v2.15.0.2 | 1057 | v0.4.0-Beta |
2.15.0.1-xpu-pip-base | v2.15.1 | v2.15.0.1 | 803.63 | v0.4.0-Beta |
2.15.0.0-xpu | v2.15.0 | v2.15.0.0 | 803 | v0.4.0-Beta |
2.14.0.1-xpu | v2.14.1 | v2.14.0.1 | 736 | v0.3.4 |
2.13.0.0-xpu | v2.13.0 | v2.13.0.0 | 647 | v0.2.3 |
The following images include support for Intel® Deep Learning Essentials:
| Tag(s) | TensorFlow | ITEX | Driver | DL Essentials | Dockerfile |
| ---------------------- | ----------- | -------------- | ------- | --------------- |
| 2.15.0.3-xpu-pip-dl-essentials | v2.15.1 | v2.15.0.3 | 1099| 2025.0.2-6 | v0.4.0-Beta |
bashdocker run -it --rm \ --device /dev/dri \ -v /dev/dri/by-path:/dev/dri/by-path \ --ipc=host \ intel/intel-extension-for-tensorflow:xpu
The images below additionally include Jupyter Notebook server:
| Tag(s) | TensorFlow | IPEX | Driver | Dockerfile |
|---|---|---|---|---|
2.15.0.3-xpu-pip-jupyter | v2.15.1 | v2.15.0.3 | 1077 | v0.4.0-Beta |
2.15.0.2-xpu-pip-jupyter | v2.15.1 | v2.15.0.2 | 1057 | v0.4.0-Beta |
2.15.0.1-xpu-pip-jupyter | v2.15.1 | v2.15.0.1 | 803.63 | v0.4.0-Beta |
xpu-jupyter | v2.14.1 | v2.14.0.1 | 736 | v0.3.4 |
bashdocker run -it --rm \ -p 8888:8888 \ --net=host \ --device /dev/dri \ -v /dev/dri/by-path:/dev/dri/by-path \ --ipc=host \ intel/intel-extension-for-tensorflow:2.15.0.3-xpu-pip-jupyter
After running the command above, copy the URL (something like [***]) into your browser to access the notebook server.
The images below are TensorFlow* Serving with GPU Optimizations:
| Tag(s) | TensorFlow | IPEX |
|---|---|---|
2.14.0.1-serving-gpu, serving-gpu | v2.14.1 | v2.14.0.1 |
2.13.0.0-serving-gpu, | v2.13.0 | v2.13.0.0 |
bashdocker run -it --rm \ -p 8500:8500 \ --device /dev/dri \ -v /dev/dri/by-path:/dev/dri/by-path \ -v $PWD/workspace:/workspace \ -w /workspace \ -e MODEL_NAME=<your-model-name> \ -e MODEL_DIR=<your-model-dir> \ intel/intel-extension-for-tensorflow:serving-gpu
For more details, follow the procedure in the Intel® Extension for TensorFlow* Serving instructions.
The images below are built only with CPU optimizations (GPU acceleration support was deliberately excluded):
| Tag(s) | TensorFlow | ITEX | Dockerfile |
|---|---|---|---|
2.15.1-pip-base, latest | v2.15.1 | v2.15.0.1 | v0.4.0-Beta |
2.15.0-pip-base | v2.15.0 | v2.15.0.0 | v0.4.0-Beta |
2.14.0-pip-base | v2.14.1 | v2.14.0.1 | v0.3.4 |
2.13-pip-base | v2.13.0 | v2.13.0.0 | v0.2.3 |
The images below additionally include Jupyter Notebook server:
| Tag(s) | TensorFlow | ITEX | Dockerfile |
|---|---|---|---|
2.15.1-pip-jupyter | v2.15.1 | v2.15.0.1 | v0.4.0-Beta |
2.15.0-pip-jupyter | v2.15.0 | v2.15.0.0 | v0.4.0-Beta |
2.14.0-pip-jupyter | v2.14.1 | v2.14.0.1 | v0.3.4 |
2.13-pip-jupyter | v2.13.0 | v2.13.0.0 | v0.2.3 |
bashdocker run -it --rm \ -p 8888:8888 \ --net=host \ -v $PWD/workspace:/workspace \ -w /workspace \ intel/intel-extension-for-tensorflow:2.15.1-pip-jupyter
After running the command above, copy the URL (something like [***]) into your browser to access the notebook server.
The images below additionally include Horovod:
| Tag(s) | Tensorflow | ITEX | Horovod | Dockerfile |
|---|---|---|---|---|
2.15.1-pip-multinode | v2.15.1 | v2.15.0.1 | v0.28.1 | v0.4.0-Beta |
2.15.0-pip-multinode | v2.15.0 | v2.15.0.0 | v0.28.1 | v0.4.0-Beta |
2.14.0-pip-openmpi-multinode | v2.14.1 | v2.14.0.1 | v0.28.1 | v0.3.4 |
2.13-pip-openmpi-mulitnode | v2.13.0 | v2.13.0.0 | v0.28.0 | v0.2.3 |
[!NOTE] Passwordless SSH connection is also enabled in the image, but the container does not contain any SSH ID keys. The user needs to mount those keys at
/root/.ssh/id_rsaand/etc/ssh/authorized_keys.
[!TIP] Before mounting any keys, modify the permissions of those files with
chmod 600 authorized_keys; chmod 600 id_rsato grant read access for the default user account.
[!IMPORTANT] Maintainence, Bug Fixes, and Releases of Intel® Extension for TensorFlow* Multi-Node Container for Xeon Processors have ceased development. The last supported version is
2.15.1. For future releases, please use the Intel® Extension for TensorFlow* Multi-Node Container for XPU.
Some additional assembly is required to utilize this container with OpenSSH. To perform any kind of DDP (Distributed Data Parallel) execution, containers are assigned the roles of launcher and worker respectively:
SSH Server (Worker)
/etc/ssh/authorized_keysSSH Client (Launcher)
/root/.ssh/id_rsaTo add these files correctly please follow the steps described below.
Setup ID Keys
You can use the commands provided below to generate the identity keys for OpenSSH.
bashssh-keygen -q -N "" -t rsa -b 4096 -f ./id_rsa touch authorized_keys cat id_rsa.pub >> authorized_keys
Configure the permissions and ownership for all of the files you have created so far
bashchmod 600 id_rsa config authorized_keys chown root:root id_rsa.pub id_rsa config authorized_keys
Create a hostfile for horovod. (Optional)
txtHost host1 HostName <Hostname of host1> IdentitiesOnly yes IdentityFile ~/.root/id_rsa Port <SSH Port> Host host2 HostName <Hostname of host2> IdentitiesOnly yes IdentityFile ~/.root/id_rsa Port <SSH Port> ...
Configure Horovod in your python script
pythonimport horovod.torch as hvd hvd.init()
Now start the workers and execute DDP on the launcher
Worker run command:
bashdocker run -it --rm \ --net=host \ -v $PWD/authorized_keys:/etc/ssh/authorized_keys \ -v $PWD/tests:/workspace/tests \ -w /workspace \ intel/intel-optimized-tensorflow:2.15.1-pip-multinode \ bash -c '/usr/sbin/sshd -D'
Launcher run command:
bashdocker run -it --rm \ --net=host \ -v $PWD/id_rsa:/root/.ssh/id_rsa \ -v $PWD/tests:/workspace/tests \ -v $PWD/hostfile:/root/ssh/config \ -w /workspace \ intel/intel-optimized-tensorflow:2.15.1-pip-multinode \ bash -c 'horovodrun --verbose -np 2 -H host1:1,host2:1 /workspace/tests/tf_base_test.py'
[!NOTE] Intel® MPI can be configured based on your machine settings. If the above commands do not work for you, see the documentation for how to configure based on your network.
The images below are TensorFlow* Serving with CPU Optimizations:
| Tag(s) | TensorFlow | ITEX |
|---|---|---|
2.14.0.1-serving-cpu, serving-cpu | v2.14.1 | v2.14.0.1 |
2.13.0.0-serving-cpu | v2.13.0 | v2.13.0.0 |
bashdocker run -it --rm \ -p 8500:8500 \ --device /dev/dri \ -v /dev/dri/by-path:/dev/dri/by-path \ -v $PWD/workspace:/workspace \ -w /workspace \ -e MODEL_NAME=<your-model-name> \ -e MODEL_DIR=<your-model-dir> \ intel/intel-extension-for-tensorflow:serving-cpu
For more details, follow the procedure in the Intel® Extension for TensorFlow* Serving instructions.
The images below are built only with CPU optimizations (GPU acceleration support was deliberately excluded) and include Intel® Distribution for Python*:
| Tag(s) | TensorFlow | ITEX | Dockerfile |
|---|---|---|---|
2.15.1-idp-base | v2.15.1 | v2.15.0.1 | v0.4.0-Beta |
2.15.0-idp-base | v2.15.0 | v2.15.0.0 | v0.4.0-Beta |
2.14.0-idp-base | v2.14.1 | v2.14.0.1 | v0.3.4 |
2.13-idp-base | v2.13.0 | v2.13.0.0 | v0.2.3 |
The images below additionally include Jupyter Notebook server:
| Tag(s) | TensorFlow | ITEX | Dockerfile |
|---|---|---|---|
2.15.1-idp-jupyter | v2.15.1 | v2.15.0.1 | v0.4.0-Beta |
2.15.0-idp-jupyter | v2.15.0 | v2.15.0.0 | v0.4.0-Beta |
2.14.0-idp-jupyter | v2.14.1 | v2.14.0.1 | v0.3.4 |
2.13-idp-jupyter | v2.13.0 | v2.13.0.0 | v0.2.3 |
The images below additionally include Horovod:
| Tag(s) | Tensorflow | ITEX | Horovod | Dockerfile |
|---|---|---|---|---|
2.15.1-idp-multinode | v2.15.1 | v2.15.0.1 | v0.28.1 | v0.4.0-Beta |
2.15.0-idp-multinode | v2.15.0 | v2.15.0.0 | v0.28.1 | v0.4.0-Beta |
2.14.0-idp-openmpi-multinode | v2.14.1 | v2.14.0.1 | v0.28.1 | v0.3.4 |
2.13-idp-openmpi-mulitnode | v2.13.0 | v2.13.0.0 | v0.28.0 | v0.2.3 |
The images below are built only with CPU and GPU optimizations and include Intel® Distribution for Python*:
| Tag(s) | Pytorch | ITEX | Driver | Dockerfile |
|---|---|---|---|---|
2.15.0.3-xpu-idp-base | v2.15.1 | v2.15.0.3 | 1077 | v0.4.0-Beta |
2.15.0.2-xpu-idp-base | v2.15.1 | v2.15.0.2 | 1057 | v0.4.0-Beta |
2.15.0.1-xpu-idp-base | v2.15.1 | v2.15.0.1 | 803 | v0.4.0-Beta |
2.15.0-xpu-idp-base | v2.15.0 | v2.15.0.0 | 803 | v0.4.0-Beta |
The following images include support for Intel® Deep Learning Essentials:
| Tag(s) | TensorFlow | ITEX | Driver | DL Essentials | Dockerfile |
| ---------------------- | ----------- | -------------- | ------- | --------------- |
| 2.15.0.3-xpu-idp-dl-essentials | v2.15.1 | v2.15.0.3 | 1099| 2025.0.2-6 | v0.4.0-Beta |
The images below additionally include Jupyter Notebook server:
| Tag(s) | Pytorch | IPEX | Driver | Jupyter Port | Dockerfile |
|---|---|---|---|---|---|
2.15.0.3-xpu-idp-jupyter | v2.15.1 | v2.15.0.3 | 1077 | 8888 | v0.4.0-Beta |
2.15.0.2-xpu-idp-jupyter | v2.15.1 | v2.15.0.2 | 1057 | 8888 | v0.4.0-Beta |
2.15.0.1-xpu-idp-jupyter | v2.15.1 | v2.15.0.1 | 803 | 8888 | v0.4.0-Beta |
2.15.0-xpu-idp-jupyter | [v2.1.0] | v2.15.0.0 | 803 | 8888 | v0.4.0-Beta |
[!NOTE] The support for CPU and XPU images containing Intel® Distribution for Python* are deprecated with no new releases. However, pip based images will be supported.
To build the images from source, clone the AI Containers repository, follow the main README.md file to setup your environment, and run the following command:
bashcd pytorch docker compose build tf-base docker compose run tf-base
You can find the list of services below for each container in the group:
| Service Name | Description |
|---|---|
tf-base | Base image with Intel® Extension for TensorFlow* |
jupyter | Adds Jupyter Notebook server |
multinode | Adds Intel® MPI, Horovod and INC |
xpu | Adds Intel GPU Support |
xpu-jupyter | Adds Jupyter notebook server to GPU image |
View the License for the Intel® Extension for TensorFlow*.
The images below also contain other software which may be under other licenses (such as TensorFlow*, Jupyter*, Bash, etc. from the base).
It is the image user's responsibility to ensure that any use of The images below comply with any relevant licenses for all software contained within.
* Other names and brands may be claimed as the property of others.
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
VS Code Dev Containers 配置
MacOS OrbStack 容器配置
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务