专属域名
文档搜索
轩辕助手
Run助手
邀请有礼
返回顶部
快速返回页面顶部
收起
收起工具栏
轩辕镜像 官方专业版
轩辕镜像 官方专业版轩辕镜像 官方专业版官方专业版
首页个人中心搜索镜像

交易
充值流量我的订单
工具
提交工单镜像收录一键安装
Npm 源Pip 源Homebrew 源
帮助
常见问题
其他
关于我们网站地图

官方QQ群: 1072982923

intel/intel-optimized-tensorflow Docker 镜像 - 轩辕镜像

intel-optimized-tensorflow
intel/intel-optimized-tensorflow
Containers with TensorFlow* optimized with oneAPI Deep Neural Network Library (oneDNN)
14 收藏0 次下载
🚀 稳定镜像源 = 更少宕机 + 更低运维成本
镜像简介版本下载
🚀 稳定镜像源 = 更少宕机 + 更低运维成本

PROJECT NOT UNDER ACTIVE MANAGEMENT. This image repo will no longer be maintained by Intel.

Intel® Extension for TensorFlow*

Intel® Extension for TensorFlow* extends TensorFlow* with up-to-date feature optimizations for an extra performance boost on Intel hardware.

Intel® Extension for TensorFlow* is based on the TensorFlow PluggableDevice interface to bring Intel XPU(GPU, CPU, etc.) devices into TensorFlow* with flexibility for on-demand performance on the following Intel GPUs:

  • Intel® Arc™ A-Series Graphics
  • Intel® Data Center GPU Flex Series
  • Intel® Data Center GPU Max Series

Note: There are two dockerhub repositories (intel/intel-extension-for-tensorflow and intel/intel-optimized-tensorflow) that are routinely updated with the latest images, however, some legacy images have not be published to both repositories.

XPU images

The images below include support for both CPU and GPU optimizations:

Tag(s)TensorFlowITEXDriverDockerfile
2.15.0.3-xpu-pip-base, xpuv2.15.1v2.15.0.31077v0.4.0-Beta
2.15.0.2-xpu-pip-base, xpuv2.15.1v2.15.0.21057v0.4.0-Beta
2.15.0.1-xpu-pip-basev2.15.1v2.15.0.1803.63v0.4.0-Beta
2.15.0.0-xpuv2.15.0v2.15.0.0803v0.4.0-Beta
2.14.0.1-xpuv2.14.1v2.14.0.1736v0.3.4
2.13.0.0-xpuv2.13.0v2.13.0.0647v0.2.3

The following images include support for Intel® Deep Learning Essentials:

| Tag(s) | TensorFlow | ITEX | Driver | DL Essentials | Dockerfile | | ---------------------- | ----------- | -------------- | ------- | --------------- | | 2.15.0.3-xpu-pip-dl-essentials | v2.15.1 | v2.15.0.3 | 1099| 2025.0.2-6 | v0.4.0-Beta |

Run the XPU Container
bash
docker run -it --rm \
    --device /dev/dri \
    -v /dev/dri/by-path:/dev/dri/by-path \
    --ipc=host \
    intel/intel-extension-for-tensorflow:xpu

The images below additionally include Jupyter Notebook server:

Tag(s)TensorFlowIPEXDriverDockerfile
2.15.0.3-xpu-pip-jupyterv2.15.1v2.15.0.31077v0.4.0-Beta
2.15.0.2-xpu-pip-jupyterv2.15.1v2.15.0.21057v0.4.0-Beta
2.15.0.1-xpu-pip-jupyterv2.15.1v2.15.0.1803.63v0.4.0-Beta
xpu-jupyterv2.14.1v2.14.0.1736v0.3.4
Run the XPU Jupyter Container
bash
docker run -it --rm \
    -p 8888:8888 \
    --net=host \
    --device /dev/dri \
    -v /dev/dri/by-path:/dev/dri/by-path \
    --ipc=host \
    intel/intel-extension-for-tensorflow:2.15.0.3-xpu-pip-jupyter

After running the command above, copy the URL (something like [***]) into your browser to access the notebook server.


The images below are TensorFlow* Serving with GPU Optimizations:

Tag(s)TensorFlowIPEX
2.14.0.1-serving-gpu, serving-gpuv2.14.1v2.14.0.1
2.13.0.0-serving-gpu,v2.13.0v2.13.0.0
Run the Serving GPU Container
bash
docker run -it --rm \
    -p 8500:8500 \
    --device /dev/dri \
    -v /dev/dri/by-path:/dev/dri/by-path \
    -v $PWD/workspace:/workspace \
    -w /workspace \
    -e MODEL_NAME=<your-model-name> \
    -e MODEL_DIR=<your-model-dir> \
    intel/intel-extension-for-tensorflow:serving-gpu

For more details, follow the procedure in the Intel® Extension for TensorFlow* Serving instructions.

CPU only images

The images below are built only with CPU optimizations (GPU acceleration support was deliberately excluded):

Tag(s)TensorFlowITEXDockerfile
2.15.1-pip-base, latestv2.15.1v2.15.0.1v0.4.0-Beta
2.15.0-pip-basev2.15.0v2.15.0.0v0.4.0-Beta
2.14.0-pip-basev2.14.1v2.14.0.1v0.3.4
2.13-pip-basev2.13.0v2.13.0.0v0.2.3

The images below additionally include Jupyter Notebook server:

Tag(s)TensorFlowITEXDockerfile
2.15.1-pip-jupyterv2.15.1v2.15.0.1v0.4.0-Beta
2.15.0-pip-jupyterv2.15.0v2.15.0.0v0.4.0-Beta
2.14.0-pip-jupyterv2.14.1v2.14.0.1v0.3.4
2.13-pip-jupyterv2.13.0v2.13.0.0v0.2.3
Run the CPU Jupyter Container
bash
docker run -it --rm \
    -p 8888:8888 \
    --net=host \
    -v $PWD/workspace:/workspace \
    -w /workspace \
    intel/intel-extension-for-tensorflow:2.15.1-pip-jupyter

After running the command above, copy the URL (something like [***]) into your browser to access the notebook server.


The images below additionally include Horovod:

Tag(s)TensorflowITEXHorovodDockerfile
2.15.1-pip-multinodev2.15.1v2.15.0.1v0.28.1v0.4.0-Beta
2.15.0-pip-multinodev2.15.0v2.15.0.0v0.28.1v0.4.0-Beta
2.14.0-pip-openmpi-multinodev2.14.1v2.14.0.1v0.28.1v0.3.4
2.13-pip-openmpi-mulitnodev2.13.0v2.13.0.0v0.28.0v0.2.3

[!NOTE] Passwordless SSH connection is also enabled in the image, but the container does not contain any SSH ID keys. The user needs to mount those keys at /root/.ssh/id_rsa and /etc/ssh/authorized_keys.

[!TIP] Before mounting any keys, modify the permissions of those files with chmod 600 authorized_keys; chmod 600 id_rsa to grant read access for the default user account.

Setup and Run ITEX Multi-Node Container

[!IMPORTANT] Maintainence, Bug Fixes, and Releases of Intel® Extension for TensorFlow* Multi-Node Container for Xeon Processors have ceased development. The last supported version is 2.15.1. For future releases, please use the Intel® Extension for TensorFlow* Multi-Node Container for XPU.

Some additional assembly is required to utilize this container with OpenSSH. To perform any kind of DDP (Distributed Data Parallel) execution, containers are assigned the roles of launcher and worker respectively:

SSH Server (Worker)

  1. Authorized Keys : /etc/ssh/authorized_keys

SSH Client (Launcher)

  1. Private User Key : /root/.ssh/id_rsa

To add these files correctly please follow the steps described below.

  1. Setup ID Keys

    You can use the commands provided below to generate the identity keys for OpenSSH.

    bash
    ssh-keygen -q -N "" -t rsa -b 4096 -f ./id_rsa
    touch authorized_keys
    cat id_rsa.pub >> authorized_keys
    
  2. Configure the permissions and ownership for all of the files you have created so far

    bash
    chmod 600 id_rsa config authorized_keys
    chown root:root id_rsa.pub id_rsa config authorized_keys
    
  3. Create a hostfile for horovod. (Optional)

    txt
    Host host1
        HostName <Hostname of host1>
        IdentitiesOnly yes
        IdentityFile ~/.root/id_rsa
        Port <SSH Port>
    Host host2
        HostName <Hostname of host2>
        IdentitiesOnly yes
        IdentityFile ~/.root/id_rsa
        Port <SSH Port>
    ...
    
  4. Configure Horovod in your python script

    python
    import horovod.torch as hvd
    
    hvd.init()
    
  5. Now start the workers and execute DDP on the launcher

    1. Worker run command:

      bash
      docker run -it --rm \
          --net=host \
          -v $PWD/authorized_keys:/etc/ssh/authorized_keys \
          -v $PWD/tests:/workspace/tests \
          -w /workspace \
          intel/intel-optimized-tensorflow:2.15.1-pip-multinode \
          bash -c '/usr/sbin/sshd -D'
      
    2. Launcher run command:

      bash
      docker run -it --rm \
          --net=host \
          -v $PWD/id_rsa:/root/.ssh/id_rsa \
          -v $PWD/tests:/workspace/tests \
          -v $PWD/hostfile:/root/ssh/config \
          -w /workspace \
          intel/intel-optimized-tensorflow:2.15.1-pip-multinode \
          bash -c 'horovodrun --verbose -np 2 -H host1:1,host2:1 /workspace/tests/tf_base_test.py'
      

[!NOTE] Intel® MPI can be configured based on your machine settings. If the above commands do not work for you, see the documentation for how to configure based on your network.


The images below are TensorFlow* Serving with CPU Optimizations:

Tag(s)TensorFlowITEX
2.14.0.1-serving-cpu, serving-cpuv2.14.1v2.14.0.1
2.13.0.0-serving-cpuv2.13.0v2.13.0.0
Run the Serving CPU Container
bash
docker run -it --rm \
    -p 8500:8500 \
    --device /dev/dri \
    -v /dev/dri/by-path:/dev/dri/by-path \
    -v $PWD/workspace:/workspace \
    -w /workspace \
    -e MODEL_NAME=<your-model-name> \
    -e MODEL_DIR=<your-model-dir> \
    intel/intel-extension-for-tensorflow:serving-cpu

For more details, follow the procedure in the Intel® Extension for TensorFlow* Serving instructions.

CPU only images with Intel® Distribution for Python*

The images below are built only with CPU optimizations (GPU acceleration support was deliberately excluded) and include Intel® Distribution for Python*:

Tag(s)TensorFlowITEXDockerfile
2.15.1-idp-basev2.15.1v2.15.0.1v0.4.0-Beta
2.15.0-idp-basev2.15.0v2.15.0.0v0.4.0-Beta
2.14.0-idp-basev2.14.1v2.14.0.1v0.3.4
2.13-idp-basev2.13.0v2.13.0.0v0.2.3

The images below additionally include Jupyter Notebook server:

Tag(s)TensorFlowITEXDockerfile
2.15.1-idp-jupyterv2.15.1v2.15.0.1v0.4.0-Beta
2.15.0-idp-jupyterv2.15.0v2.15.0.0v0.4.0-Beta
2.14.0-idp-jupyterv2.14.1v2.14.0.1v0.3.4
2.13-idp-jupyterv2.13.0v2.13.0.0v0.2.3

The images below additionally include Horovod:

Tag(s)TensorflowITEXHorovodDockerfile
2.15.1-idp-multinodev2.15.1v2.15.0.1v0.28.1v0.4.0-Beta
2.15.0-idp-multinodev2.15.0v2.15.0.0v0.28.1v0.4.0-Beta
2.14.0-idp-openmpi-multinodev2.14.1v2.14.0.1v0.28.1v0.3.4
2.13-idp-openmpi-mulitnodev2.13.0v2.13.0.0v0.28.0v0.2.3

XPU images with Intel® Distribution for Python*

The images below are built only with CPU and GPU optimizations and include Intel® Distribution for Python*:

Tag(s)PytorchITEXDriverDockerfile
2.15.0.3-xpu-idp-basev2.15.1v2.15.0.31077v0.4.0-Beta
2.15.0.2-xpu-idp-basev2.15.1v2.15.0.21057v0.4.0-Beta
2.15.0.1-xpu-idp-basev2.15.1v2.15.0.1803v0.4.0-Beta
2.15.0-xpu-idp-basev2.15.0v2.15.0.0803v0.4.0-Beta

The following images include support for Intel® Deep Learning Essentials:

| Tag(s) | TensorFlow | ITEX | Driver | DL Essentials | Dockerfile | | ---------------------- | ----------- | -------------- | ------- | --------------- | | 2.15.0.3-xpu-idp-dl-essentials | v2.15.1 | v2.15.0.3 | 1099| 2025.0.2-6 | v0.4.0-Beta |

The images below additionally include Jupyter Notebook server:

Tag(s)PytorchIPEXDriverJupyter PortDockerfile
2.15.0.3-xpu-idp-jupyterv2.15.1v2.15.0.310778888v0.4.0-Beta
2.15.0.2-xpu-idp-jupyterv2.15.1v2.15.0.210578888v0.4.0-Beta
2.15.0.1-xpu-idp-jupyterv2.15.1v2.15.0.18038888v0.4.0-Beta
2.15.0-xpu-idp-jupyter[v2.1.0]v2.15.0.08038888v0.4.0-Beta

[!NOTE] The support for CPU and XPU images containing Intel® Distribution for Python* are deprecated with no new releases. However, pip based images will be supported.

Build from Source

To build the images from source, clone the AI Containers repository, follow the main README.md file to setup your environment, and run the following command:

bash
cd pytorch
docker compose build tf-base
docker compose run tf-base

You can find the list of services below for each container in the group:

Service NameDescription
tf-baseBase image with Intel® Extension for TensorFlow*
jupyterAdds Jupyter Notebook server
multinodeAdds Intel® MPI, Horovod and INC
xpuAdds Intel GPU Support
xpu-jupyterAdds Jupyter notebook server to GPU image

License

View the License for the Intel® Extension for TensorFlow*.

The images below also contain other software which may be under other licenses (such as TensorFlow*, Jupyter*, Bash, etc. from the base).

It is the image user's responsibility to ensure that any use of The images below comply with any relevant licenses for all software contained within.

* Other names and brands may be claimed as the property of others.

查看更多 intel-optimized-tensorflow 相关镜像 →
intel/intel-gpu-plugin logo
intel/intel-gpu-plugin
Intel GPU设备插件是一款为Kubernetes集群开发的组件,旨在实现对Intel GPU资源的识别、管理与高效调度,支持部署GPU加速的工作负载,包括AI模型训练、高性能计算、数据分析等任务,并通过优化资源分配和实时监控,提升集群中GPU资源的利用率及相关工作负载的运行效率。
1510M+ pulls
上次更新:未知
intel/intel-optimized-pytorch logo
intel/intel-optimized-pytorch
用于在英特尔架构上运行PyTorch工作负载的容器
16100K+ pulls
上次更新:未知
intel/intel-gpu-initcontainer logo
intel/intel-gpu-initcontainer
暂无描述
310M+ pulls
上次更新:未知
intel/intel-qat-plugin logo
intel/intel-qat-plugin
英特尔QuickAssist Technology (QAT)的Kubernetes设备插件,用于在Kubernetes集群中暴露QAT硬件加速功能,以提升加密、压缩等任务的处理性能。
2100K+ pulls
上次更新:未知
intel/intel-sgx-plugin logo
intel/intel-sgx-plugin
暂无描述
1100K+ pulls
上次更新:未知
intel/intel-fpga-plugin logo
intel/intel-fpga-plugin
适用于Kubernetes的Intel FPGA设备插件,用于在Kubernetes集群中管理和调度Intel FPGA设备资源,支持容器化应用访问FPGA硬件加速。
50K+ pulls
上次更新:未知

轩辕镜像配置手册

探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式

登录仓库拉取

通过 Docker 登录认证访问私有仓库

Linux

在 Linux 系统配置镜像服务

Windows/Mac

在 Docker Desktop 配置镜像

Docker Compose

Docker Compose 项目配置

K8s Containerd

Kubernetes 集群配置 Containerd

K3s

K3s 轻量级 Kubernetes 镜像加速

Dev Containers

VS Code Dev Containers 配置

MacOS OrbStack

MacOS OrbStack 容器配置

宝塔面板

在宝塔面板一键配置镜像

群晖

Synology 群晖 NAS 配置

飞牛

飞牛 fnOS 系统配置镜像

极空间

极空间 NAS 系统配置服务

爱快路由

爱快 iKuai 路由系统配置

绿联

绿联 NAS 系统配置镜像

威联通

QNAP 威联通 NAS 配置

Podman

Podman 容器引擎配置

Singularity/Apptainer

HPC 科学计算容器配置

其他仓库配置

ghcr、Quay、nvcr 等镜像仓库

专属域名拉取

无需登录使用专属域名

需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单

镜像拉取常见问题

轩辕镜像免费版与专业版有什么区别?

免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。

轩辕镜像支持哪些镜像仓库?

专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。

流量耗尽错误提示

当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。

410 错误问题

通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。

manifest unknown 错误

先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。

镜像拉取成功后,如何去掉轩辕镜像域名前缀?

使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。

查看全部问题→

用户好评

来自真实用户的反馈,见证轩辕镜像的优质服务

用户头像

oldzhang

运维工程师

Linux服务器

5

"Docker访问体验非常流畅,大镜像也能快速完成下载。"

轩辕镜像
镜像详情
...
intel/intel-optimized-tensorflow
官方博客Docker 镜像使用技巧与技术博客
热门镜像查看热门 Docker 镜像推荐
一键安装一键安装 Docker 并配置镜像源
咨询镜像拉取问题请 提交工单,官方技术交流群:1072982923
轩辕镜像面向开发者与科研用户,提供开源镜像的搜索和访问支持。所有镜像均来源于原始仓库,本站不存储、不修改、不传播任何镜像内容。
咨询镜像拉取问题请提交工单,官方技术交流群:
轩辕镜像面向开发者与科研用户,提供开源镜像的搜索和访问支持。所有镜像均来源于原始仓库,本站不存储、不修改、不传播任何镜像内容。
官方邮箱:点击复制邮箱
©2024-2026 源码跳动
官方邮箱:点击复制邮箱Copyright © 2024-2026 杭州源码跳动科技有限公司. All rights reserved.