intel/pythonIntel® Distribution for Python* enhances performance and can improve your program speed from 10 to 100 times faster. It is a Python* distribution that includes the Intel® Math Kernel Library (oneMKL) and other Intel performance libraries to enable near-native performance through acceleration of core numerical and machine learning packages.
Intel® Distribution for Python* is also available for Intel® dGPUs, that include the latest Intel® dGPU drivers and Intel® OneAPI runtime libraries such as Intel® Math Kernel Library, Intel® DPC++ Compiler Library and Intel® Collective Communications Library that enable Machine Learning frameworks leverage the XPU device plugin.
The images below include variations for only the core packages in the Intel® Distribution for Python* installation, or all of the packages.
| Tag(s) | IDP |
|---|---|
3.11-full, latest | 2025.0.0 |
3.11-xpu-full | 2025.0.0 |
3.10-full, | 2024.2.0 |
3.10-core | 2024.2.0 |
To run a performance sample run the following commands:
bashgit clone [***] cd ai-containers/python docker run --rm -it \ -v $PWD/tests:/tests \ intel/python:latest \ python /tests/perf_sample.py
In the previous command, you should see a result at the bottom like: Time Consuming: 0.03897857666015625. We can compare this against python:3.11-slim-bullseye
bash# Use the working directory from the above command docker run --rm -it \ -v $PWD/tests:/tests \ python:3.10-slim-bullseye \ bash pip install numpy python /tests/perf_sample.py
Use the following command to check the availability of Intel dGPU devices on your system and the presence of Intel® OneAPI runtime libraries.
bash# Use the working directory from the first command docker run --rm -it \ -v $PWD/tests:/tests \ --device /dev/dri \ intel/python:3.11-xpu-full \ bash /tests/xpu_base_layers_test.sh
To build the images from source, clone the AI Containers repository, follow the main README.md file to setup your environment, and run the following command:
bashcd python docker compose build idp docker compose run idp
To build the xpu variant of the image, run the following commands:
bashcd python docker compose build xpu docker compose run xpu
You can find the list of services below for each container in the group:
| Service Name | Description |
|---|---|
idp | Base image with Intel® Distribution for Python* |
pip | Equivalent python image without Intel® Distribution for Python* |
xpu | Base Image for Intel XPU plugin with Intel® Distribution for Python* |
View the License for the [Intel® Distribution for Python].
It is the image user's responsibility to ensure that any use of The images below comply with any relevant licenses for all software contained within.
* Other names and brands may be claimed as the property of others.

探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
VS Code Dev Containers 配置
MacOS OrbStack 容器配置
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务