本站支持搜索的镜像仓库:Docker Hub、gcr.io、ghcr.io、quay.io、k8s.gcr.io、registry.gcr.io、elastic.co、mcr.microsoft.com
Current MLflow Docker Image from Canonical, based on Ubuntu. Receives security updates and rolls to newer MLflow or Ubuntu release. This repository is free to use and exempted from per-user rate limits.
MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud). Read more on the mlflow website.
!LTS Up to 5 years free security maintenance on LTS channels.
!ESM Up to 10 years customer security maintenance from Canonical's restricted repositories.
| Channel Tags | Currently | Architectures | ||
|---|---|---|---|---|
2.1.1_1.0-22.04 | !LTS | !ESM | MLflow 2.1.1_1.0 on Ubuntu 22.04 LTS | amd64 |
track_risk |
Channel Tags shows the most stable channel for that track ordered stable, candidate, beta, edge. More risky channels are always implicitly available. So if beta is listed, you can also pull edge. If candidate is listed, you can pull beta and edge. When stable is listed, all four are available. Images are guaranteed to progress through the sequence edge, beta, candidate before stable.
If your usage includes commercial redistribution, or requires ESM or unavailable channels/versions, please get in touch with the Canonical team (or using ***).
Launch this image locally:
docker run -d --name mlflow-container -e TZ=UTC -p 5000:5000 ubuntu/mlflow:2.1.1_1.0-22.04_stable
Access your MLflow ui at http://localhost:5000.
| Parameter | Description |
|---|---|
-p 5000:5000 | Expose MLflow on localhost:5000. |
To debug the container:
docker logs -f mlflow-container
To get an interactive shell:
docker exec -it mlflow-container /bin/bash
If you find a bug in our image or want to request a specific feature, please file a bug here:
[***]
Please title the bug "mlflow: <issue summary>". Make sure to include the digest of the image you are using, from:
docker images --no-trunc --quiet ubuntu/mlflow:<tag>
These channels (tags) are not updated anymore. Please upgrade to newer channels, or reach out if you can't upgrade.
| Track | Version | EOL | Upgrade Path |
|---|---|---|---|
track |
免费版仅支持 Docker Hub 加速,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
免费版仅支持 docker.io;专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录方式配置轩辕镜像加速服务,包含7个详细步骤
在 Linux 系统上配置轩辕镜像源,支持主流发行版
在 Docker Desktop 中配置轩辕镜像加速,适用于桌面系统
在 Docker Compose 中使用轩辕镜像加速,支持容器编排
在 k8s 中配置 containerd 使用轩辕镜像加速
在宝塔面板中配置轩辕镜像加速,提升服务器管理效率
在 Synology 群晖NAS系统中配置轩辕镜像加速
在飞牛fnOS系统中配置轩辕镜像加速
在极空间NAS中配置轩辕镜像加速
在爱快ikuai系统中配置轩辕镜像加速
在绿联NAS系统中配置轩辕镜像加速
在威联通NAS系统中配置轩辕镜像加速
在 Podman 中配置轩辕镜像加速,支持多系统
配置轩辕镜像加速9大主流镜像仓库,包含详细配置步骤
无需登录即可使用轩辕镜像加速服务,更加便捷高效
需要其他帮助?请查看我们的 常见问题 或 官方QQ群: 13763429