本站支持搜索的镜像仓库:Docker Hub、gcr.io、ghcr.io、quay.io、k8s.gcr.io、registry.gcr.io、elastic.co、mcr.microsoft.com
This repository provides a minimal CPU-only Ollama Docker image, specifically designed to run on systems without GPU support. At just 70MB, this image is significantly smaller than the official Ollama image, which is around 4GB.
ollama latest b99944c07117 3 hours ago 69.3MB
[***]
[***]
[***]
Lightweight: The official Ollama image is over 4GB in size, which can be overkill for systems that only need CPU-based processing. This image is only 70MB, making it much faster to download and deploy.
CPU-only Support: This image is tailored for systems without GPUs. It ensures you can run Ollama efficiently, even on basic or resource-constrained environments, without needing specialized hardware.
Run Anywhere: Whether you're working on local servers, edge devices, or cloud environments that don’t offer GPU resources, this image allows you to run Ollama anywhere, focusing purely on CPU-based operations.
docker pull alpine/ollama
docker rm -f ollama docker run -d -p 11434:11434 -v ~/.ollama/root/.ollama --name ollama alpine/ollama
llama3.2, only run once. It will save the model locally, you can re-use it later.docker exec -ti ollama ollama pull llama3.2
If you don't want to download, you can choice to use alpine/llama3.2 image directly. I create this with model "llama3.2" integrated already
docker run -d -p 11434:11434 --name llama3.2 alpine/llama3.2
$ curl http://localhost:11434/api/generate -d '{ "model": "llama3.2", "prompt":"Why is the sky blue?" }' {"model":"llama3.2","created_at":"2024-10-16T00:25:58.59931201Z","response":"The","done":false} {"model":"llama3.2","created_at":"2024-10-16T00:25:58.695826838Z","response":" sky","done":false} {"model":"llama3.2","created_at":"2024-10-16T00:25:58.780917761Z","response":" appears","done":false} {"model":"llama3.2","created_at":"2024-10-16T00:25:58.992556209Z","response":" blue","done":false} {"model":"llama3.2","created_at":"2024-10-16T00:25:59.085970606Z","response":" because","done":false} {"model":"llama3.2","created_at":"2024-10-16T00:25:59.30869749Z","response":" of","done":false} ...
If you monitor the CPU usage, for example, with htop, you would see the high CPU usage
You can deploy the Ollama web UI to chat with it directly. There are many tools available, but I won't recommend any specific one.
this image could be deployed to any enviornment, for example, in kubernetes cluster, you can use it to analyze logs, streamlining logs with local LLMs, etc.


免费版仅支持 Docker Hub 加速,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
免费版仅支持 docker.io;专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录方式配置轩辕镜像加速服务,包含7个详细步骤
在 Linux 系统上配置轩辕镜像源,支持主流发行版
在 Docker Desktop 中配置轩辕镜像加速,适用于桌面系统
在 Docker Compose 中使用轩辕镜像加速,支持容器编排
在 k8s 中配置 containerd 使用轩辕镜像加速
在宝塔面板中配置轩辕镜像加速,提升服务器管理效率
在 Synology 群晖NAS系统中配置轩辕镜像加速
在飞牛fnOS系统中配置轩辕镜像加速
在极空间NAS中配置轩辕镜像加速
在爱快ikuai系统中配置轩辕镜像加速
在绿联NAS系统中配置轩辕镜像加速
在威联通NAS系统中配置轩辕镜像加速
在 Podman 中配置轩辕镜像加速,支持多系统
配置轩辕镜像加速9大主流镜像仓库,包含详细配置步骤
无需登录即可使用轩辕镜像加速服务,更加便捷高效
需要其他帮助?请查看我们的 常见问题 或 官方QQ群: 13763429