CONTAINERSIMAGESRUNBUILD
cuda:12.2 | |
|---|---|
| Builds | dustynv/cuda:12.2-samples-r36.2.0 (2023-12-07, 4.8GB) |
cuda:12.4 | |
|---|---|
| Requires | L4T ['==36.*'] |
| Dependencies | build-essential |
| Dependants | cuda:12.4-samples cudnn:9.0 tensorrt:10.0 |
| Dockerfile | Dockerfile |
cuda:12.2-samples | |
|---|---|
| Builds |  |
| Notes | CUDA samples from [***] installed under /opt/cuda-samples |
cuda:12.4-samples | |
|---|---|
| Requires | L4T ['==36.*'] |
| Dependencies | build-essential cuda:12.4 python cmake |
| Dockerfile | Dockerfile.samples |
| Notes | CUDA samples from [***] installed under /opt/cuda-samples |
cuda:11.8 | |
|---|---|
| Requires | L4T ['==35.*'] |
| Dependencies | build-essential |
| Dependants | cuda:11.8-samples |
| Dockerfile | Dockerfile |
cuda:11.8-samples | |
|---|---|
| Requires | L4T ['==35.*'] |
| Dependencies | build-essential cuda:11.8 python cmake |
| Dockerfile | Dockerfile.samples |
| Notes | CUDA samples from [***] installed under /opt/cuda-samples |
cuda:11.4 | |
|---|---|
| Aliases | cuda |
| Requires | L4T ['<36'] |
| Dependencies | build-essential |
| Dependants | arrow:12.0.1 arrow:14.0.1 arrow:5.0.0 audiocraft auto_awq:0.2.4 auto_gptq:0.7.1 awq:0.1.0 bitsandbytes bitsandbytes:builder cuda-python:11.4 cuda:11.4-samples cudf:21.10.02 cudf:23.10.03 cudnn cuml cupy deepstream efficientvit exllama:0.0.14 exllama:0.0.15 faiss:1.7.3 faiss:1.7.3-builder faiss:1.7.4 faiss:1.7.4-builder faiss_lite flash-attention gptq-for-llama gstreamer jetson-inference jetson-utils l4t-diffusion l4t-ml l4t-pytorch l4t-tensorflow:tf1 l4t-tensorflow:tf2 l4t-text-generation langchain langchain:samples llama_cpp:0.2.57 llava local_llm minigpt4 mlc:51fb0f4 mlc:607dc5a nano_llm:24.4 nano_llm:main nanodb nanoowl nanosam nemo numba ollama onnxruntime:1.11 onnxruntime:1.11-builder onnxruntime:1.16.3 onnxruntime:1.16.3-builder onnxruntime:1.17 onnxruntime:1.17-builder openai-triton openai-triton:builder opencv:4.5.0 opencv:4.5.0-builder opencv:4.8.1 opencv:4.8.1-builder opencv:4.9.0 optimum piper-tts pycuda pytorch:1.10 pytorch:1.9 pytorch:2.0 pytorch:2.1 pytorch:2.2 pytorch:2.3 raft realsense ros:foxy-desktop ros:foxy-ros-base ros:foxy-ros-core ros:galactic-desktop ros:galactic-ros-base ros:galactic-ros-core ros:humble-desktop ros:humble-ros-base ros:humble-ros-core ros:iron-desktop ros:iron-ros-base ros:iron-ros-core ros:melodic-desktop ros:melodic-ros-base ros:melodic-ros-core ros:noetic-desktop ros:noetic-ros-base ros:noetic-ros-core sam stable-diffusion stable-diffusion-webui tam tensorflow tensorflow2 tensorrt tensorrt_llm:0.10.dev0 tensorrt_llm:0.10.dev0-builder tensorrt_llm:0.5 tensorrt_llm:0.5-builder text-generation-inference text-generation-webui:1.7 text-generation-webui:6a7cd01 text-generation-webui:main torch2trt torch_tensorrt torchaudio:0.10.0 torchaudio:0.9.0 torchaudio:2.0.1 torchaudio:2.1.0 torchaudio:2.2.2 torchaudio:2.3.0 torchvision:0.10.0 torchvision:0.11.1 torchvision:0.15.1 torchvision:0.16.2 torchvision:0.17.2 transformers transformers:git transformers:nvgpt tritonserver tvm whisper whisperx xformers xtts zed |
| Dockerfile | Dockerfile.builtin |
cuda:11.4-samples | |
|---|---|
| Aliases | cuda:samples |
| Requires | L4T ['<36'] |
| Dependencies | build-essential cuda:11.4 python cmake |
| Dockerfile | Dockerfile.samples |
| Notes | CUDA samples from [***] installed under /opt/cuda-samples |
| Repository/Tag | Date | Arch | Size |
|---|---|---|---|
dustynv/cuda:12.2-r36.2.0 | 2023-12-05 | arm64 | 3.4GB |
dustynv/cuda:12.2-samples-r36.2.0 | 2023-12-07 | arm64 | 4.8GB |
Container images are compatible with other minor versions of JetPack/L4T:
• L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
• L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)
To start the container, you can use jetson-containers run and autotag, or manually put together a docker run command:
bash# automatically pull or build a compatible container image jetson-containers run $(autotag cuda) # or explicitly specify one of the container images above jetson-containers run dustynv/cuda:12.2-samples-r36.2.0 # or if using 'docker run' (specify image and mounts/ect) sudo docker run --runtime nvidia -it --rm --network=host dustynv/cuda:12.2-samples-r36.2.0
jetson-containers runforwards arguments todocker runwith some defaults added (like--runtime nvidia, mounts a/datacache, and detects devices)
autotagfinds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.
To mount your own directories into the container, use the -v or --volume flags:
bashjetson-containers run -v /path/on/host:/path/in/container $(autotag cuda)
To launch the container running a command, as opposed to an interactive shell:
bashjetson-containers run $(autotag cuda) my_app --abc xyz
You can pass any options to it that you would to docker run, and it'll print out the full command that it constructs before executing it.
If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:
bashjetson-containers build cuda
The dependencies from above will be built into the container, and it'll be tested during. Run it with --help for build options.
来自真实用户的反馈,见证轩辕镜像的优质服务
免费版仅支持 Docker Hub 加速,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
免费版仅支持 docker.io;专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像加速服务
在 Docker Desktop 配置镜像加速
Docker Compose 项目配置加速
Kubernetes 集群配置 Containerd
在宝塔面板一键配置镜像加速
Synology 群晖 NAS 配置加速
飞牛 fnOS 系统配置镜像加速
极空间 NAS 系统配置加速服务
爱快 iKuai 路由系统配置加速
绿联 NAS 系统配置镜像加速
QNAP 威联通 NAS 配置加速
Podman 容器引擎配置加速
HPC 科学计算容器配置加速
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名加速
需要其他帮助?请查看我们的 常见问题 或 官方QQ群: 13763429