基于ROCm的PyTorch Docker镜像为开发者提供了预配置的深度学习环境,集成了PyTorch框架与AMD ROCm开源计算平台,支持AMD GPU硬件加速,无需手动配置驱动及库依赖,可直接用于深度学习模型的开发、训练与部署,有效简化环境搭建流程,确保跨平台一致性,适用于科研机构、工业界等多种场景,助力高效利用AMD硬件资源开展AI相关任务。
收藏数: 114
下载次数: 886141
状态: active
发布者: rocm
类型: 镜像
rocm/pytorch本仓库提供基于ROCm后端的PyTorch版本Docker镜像。
仓库中的Docker镜像可在以下GPU型号上运行:
如需配置支持ROCm的Docker环境,操作指引请参考:
ROCm Docker环境快速配置指南
为简化拉取和运行PyTorch容器的命令,建议将以下别名添加到.profile或.bashrc文件中(添加后需通过source ~/.bashrc或重启终端生效):
bashalias drun='sudo docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --shm-size 8G -v $HOME/dockerx:/dockerx -w /dockerx'
运行最新版本的ROCm PyTorch容器,执行以下命令即可:
bashdrun rocm/pytorch
或显式指定latest标签:
bashdrun rocm/pytorch:latest
以下是 rocm/pytorch 相关的常用 Docker 镜像,适用于 不同场景 等不同场景:
您可以使用以下命令拉取该镜像。请将 <标签> 替换为具体的标签版本。如需查看所有可用标签版本,请访问 版本下载页面。
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像服务
在 Docker Desktop 配置镜像
Docker Compose 项目配置
Kubernetes 集群配置 Containerd
K3s 轻量级 Kubernetes 镜像加速
在宝塔面板一键配置镜像
Synology 群晖 NAS 配置
飞牛 fnOS 系统配置镜像
极空间 NAS 系统配置服务
爱快 iKuai 路由系统配置
绿联 NAS 系统配置镜像
QNAP 威联通 NAS 配置
Podman 容器引擎配置
HPC 科学计算容器配置
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名
需要其他帮助?请查看我们的 常见问题Docker 镜像访问常见问题解答 或 提交工单
免费版仅支持 Docker Hub 访问,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等;免费版仅支持 docker.io。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
来自真实用户的反馈,见证轩辕镜像的优质服务