CONTAINERSIMAGESRUNBUILD

Home Assistant add-on that uses openWakeWord (demo on huggingface) for wake word detection over the wyoming protocol on NVIDIA Jetson devices. Thank you to @ms1design for contributing these Home Assistant & Wyoming containers!
home-assistant-core container on Jetson devices as well as Home Assistant hosted on different hostsOPENWAKEWORD_PRELOAD_MODEL to preload custom model. For example you can find jetson (jets_un) wake word model included in /share/openwakeword models directory.*.tflite CPU wake word models*.onnx CUDA wake word models [WIP]Requires Home Assistant
2023.9or later.
docker-compose exampleIf you want to use docker compose to run Home Assistant Core Voice Assistant Pipeline on a Jetson device with cuda enabled, you can find a full example docker-compose.yaml here.
yamlname: home-assistant-jetson version: "3.9" services: homeassistant: image: dustynv/homeassistant-core:latest-r36.2.0 restart: unless-stopped init: false privileged: true network_mode: host container_name: homeassistant hostname: homeassistant ports: - "8123:8123" volumes: - ha-config:/config - /etc/localtime:/etc/localtime:ro - /etc/timezone:/etc/timezone:ro openwakeword: image: dustynv/wyoming-openwakeword:latest-r36.2.0 restart: unless-stopped runtime: nvidia network_mode: host container_name: openwakeword hostname: openwakeword init: false ports: - "***:***/tcp" volumes: - ha-openwakeword-custom-models:/share/openwakeword - /etc/localtime:/etc/localtime:ro - /etc/timezone:/etc/timezone:ro environment: OPENWAKEWORD_CUSTOM_MODEL_DIR: /share/openwakeword OPENWAKEWORD_PRELOAD_MODEL: ok_nabu volumes: ha-config: ha-openwakeword-custom-models:
| Variable | Type | Default | Description |
|---|---|---|---|
OPENWAKEWORD_PORT | str | *** | Port number to use on host |
OPENWAKEWORD_THRESHOLD | float | 0.5 | Wake word model threshold (0.0-1.0), where higher means fewer activations. |
OPENWAKEWORD_TRIGGER_LEVEL | int | 1 | Number of activations before a detection is registered. A higher trigger level means fewer detections. |
OPENWAKEWORD_PRELOAD_MODEL | str | ok_nabu | Name or path of wake word model to pre-load. The name of the model should match with name used during custom wake word model training. When changing this, it's also recommended to set WAKEWORD_NAME variable with same value for wyoming-assist-microphone container |
OPENWAKEWORD_CUSTOM_MODEL_DIR | str | /share/openwakeword | Path to directory containing custom wake word models. Skip the trailing slash (/) |
OPENWAKEWORD_DEBUG | bool | true | Log DEBUG messages |
Read more how to configure wyoming-openwakeword in the official documentation:

[!NOTE] You can find a custom trained, example
jetson(jets_un) wake word model in the custom models directory (/share/openwakeword). To use it, setWAKEWORD_NAMEtojets_unin appropriate containers.
The Home Assistant Community has trained numerous wake word models, as detailed in this GitHub repository. However, these models are specifically designed for use with CPU.
To train a new wake word model for CPU (*.tflite) or cuda (*.onnx), you can follow @dscripka documentation or just jump to the point and use wake word training environment.
openWakeWord from source based on onnxruntime gpu enabled container (currently openWakeWord is still using tflite models instead onnx)Got questions? You have several options to get them answered:
/r/homeassistantjetson-containers, please open an issue on our GitHub.[!NOTE] This project was created by Jetson AI Lab Research Group.
wyoming-openwakeword:latest | |
|---|---|
| Aliases | wyoming-openwakeword |
| Requires | L4T ['>=34.1.0'] |
| Dependencies | build-essential homeassistant-base python:3.11 |
| Dockerfile | Dockerfile |
| Images | dustynv/wyoming-openwakeword:latest-r36.2.0 (2024-04-30, 0.3GB) |
| Notes | The openWakeWord using the wyoming protocol for usage with Home Assistant. Based on [***] and [***] |
To start the container, you can use jetson-containers run and autotag, or manually put together a docker run command:
bash# automatically pull or build a compatible container image jetson-containers run $(autotag openwakeword) # or if using 'docker run' (specify image and mounts/ect) sudo docker run --runtime nvidia -it --rm --network=host openwakeword:35.2.1
jetson-containers runforwards arguments todocker runwith some defaults added (like--runtime nvidia, mounts a/datacache, and detects devices)
autotagfinds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.
To mount your own directories into the container, use the -v or --volume flags:
bashjetson-containers run -v /path/on/host:/path/in/container $(autotag openwakeword)
To launch the container running a command, as opposed to an interactive shell:
bashjetson-containers run $(autotag openwakeword) my_app --abc xyz
You can pass any options to it that you would to docker run, and it'll print out the full command that it constructs before executing it.
If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:
bashjetson-containers build openwakeword
The dependencies from above will be built into the container, and it'll be tested during. Run it with --help for build options.
来自真实用户的反馈,见证轩辕镜像的优质服务
免费版仅支持 Docker Hub 加速,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
免费版仅支持 docker.io;专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像加速服务
在 Docker Desktop 配置镜像加速
Docker Compose 项目配置加速
Kubernetes 集群配置 Containerd
在宝塔面板一键配置镜像加速
Synology 群晖 NAS 配置加速
飞牛 fnOS 系统配置镜像加速
极空间 NAS 系统配置加速服务
爱快 iKuai 路由系统配置加速
绿联 NAS 系统配置镜像加速
QNAP 威联通 NAS 配置加速
Podman 容器引擎配置加速
HPC 科学计算容器配置加速
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名加速
需要其他帮助?请查看我们的 常见问题 或 官方QQ群: 13763429