A docker image for single-cell analyses. It's on docker-hub and GitHub.
2022.08.2 (2022-08)
2022.03 (2022-03-03)
pytorch-1.5-cuda10.1-cudnn7-devel to nvidia/cuda:11.5.1-cudnn8-devel-ubuntu20.04 to upgrade Python to 3.92021.03 (2021-05-01):
2021.02 (2021-02-07):
2020.12 (2020-12-24):
docker-compose.yml to allow GitHub Tokenv1.3.0 (2020-07-14): add programs
v1.2.0: change base image from Ubuntu18.04 to pytorch-1.5-cuda10.1-cudnn7-devel to allow GPU computing
v1.1.0: change base image jupyter/datascience-notebook to Ubuntu18.04
Pipeline: Seurat (and wrappers), scater, scran, scanpy, scVI, monet, Pagoda2, kallisto (bustools)
Doublet finding: Scrublet, DoubletFinder
Batch correction and data integration: Harmony, scmap, scBio, SingleCellNet
Clustering: SC3, metacell, SCCAF, Constclust, bigSCale2
Cluster annotation: RCA, CellAssign, garnett, scCatch, SingleR
Trajectory analysis: Monocle2/3, slingshot, Palantir, FROWMAP
RNA velocity: velocyto, scVelo, CellRank, Dynamo
Gene network: WGCNA, SCENIC (pySCENIC)
Cell-to-cell interaction: CellPhoneDB, SingleCellSingnalR, scTensor, cell2cell, CellChat
Data imputation: scImpute, MAGIC, SAVER, SAVER-X, SCRABBLE
Multi-modal: LIGER, scAI, MOFA2
Bulk deconvolution: SCDC, MuSiC
Simulation: Splatter, dyngen
Others: scGen, sleepwalk, singleCellHaystack, ComplexHeatmap
scATAC-seq: cicero, chromVAR, ArchR, Signac, cisTopic, episcanpy
Database (genome): BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10, BSgenome.Scerevisiae.UCSC.sacCer3, BSgenome.Dmelanogaster.UCSC.dm6
Database (gene): EnsDb.Hsapiens.v75, EnsDb.Hsapiens.v79, EnsDb.Hsapiens.v86, EnsDb.Mmusculus.v79
Database (motif): JASPAR2016, JASPAR2018, JASPAR2020
SeuratData: ifnb_3.1.0, panc8_3.0.2, pbmcsca_3.0.0, pbmc3k_3.1.4, celegans.embryo_0.1.0, cbmc_3.1.4, hcabm40k_3.0.0, thp1.eccite_3.1.5, stxBrain_0.1.1, stxKidney_0.1.0, bmcite_0.3.0, pbmcMultiome_0.1.2, ssHippo_3.1.4
For Docker:
# pull docker image docker pull rnakato/singlecell_jupyter # container login docker run [--gpus all] --rm -it rnakato/singlecell_jupyter /bin/bash # jupyter notebook docker run [--gpus all] --rm -p 8888:8888 -v (your directory):/opt/work rnakato/singlecell_jupyter jupyternotebook.sh
For Singularity:
# build image singularity build -F rnakato_singlecell_jupyter.sif docker://rnakato/singlecell_jupyter # jupyter notebook singularity exec [--nv] rnakato_singlecell_jupyter.sif jupyternotebook.sh # execute R directory singularity exec [--nv] rnakato_singlecell_jupyter.sif R
First clone and move to the repository
git clone [***] cd docker_singlecell
Because the Dockerfile installs many packages from GitHub, please add a GitHub token from your own repository and add it in docker-compose.R.yml and docker-compose.yml. Then type:
docker-compose -f docker-compose.R.yml build docker-compose -f docker-compose.yml build
来自真实用户的反馈,见证轩辕镜像的优质服务
免费版仅支持 Docker Hub 加速,不承诺可用性和速度;专业版支持更多镜像源,保证可用性和稳定速度,提供优先客服响应。
免费版仅支持 docker.io;专业版支持 docker.io、gcr.io、ghcr.io、registry.k8s.io、nvcr.io、quay.io、mcr.microsoft.com、docker.elastic.co 等。
当返回 402 Payment Required 错误时,表示流量已耗尽,需要充值流量包以恢复服务。
通常由 Docker 版本过低导致,需要升级到 20.x 或更高版本以支持 V2 协议。
先检查 Docker 版本,版本过低则升级;版本正常则验证镜像信息是否正确。
使用 docker tag 命令为镜像打上新标签,去掉域名前缀,使镜像名称更简洁。
探索更多轩辕镜像的使用方法,找到最适合您系统的配置方式
通过 Docker 登录认证访问私有仓库
在 Linux 系统配置镜像加速服务
在 Docker Desktop 配置镜像加速
Docker Compose 项目配置加速
Kubernetes 集群配置 Containerd
在宝塔面板一键配置镜像加速
Synology 群晖 NAS 配置加速
飞牛 fnOS 系统配置镜像加速
极空间 NAS 系统配置加速服务
爱快 iKuai 路由系统配置加速
绿联 NAS 系统配置镜像加速
QNAP 威联通 NAS 配置加速
Podman 容器引擎配置加速
HPC 科学计算容器配置加速
ghcr、Quay、nvcr 等镜像仓库
无需登录使用专属域名加速
需要其他帮助?请查看我们的 常见问题 或 官方QQ群: 13763429